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Crossover Behavior of the Transport Coefficients of 
Critical Binary Mixtures 
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The behavior of the transport coefficients related to diffusion, heat conduction, 
and their cross-processes in fluid mixtures near the consolute point and the 
liquid-vapor critical line is investigated. Simple crossover equations for the 
critical enhancement of those coefficients are developed by incorporating a finite 
cutoff and time-dependent correlation functions of the order parameter and of 
the entropy into decoupled-mode theory integrals. It is shown that the thermal 
conductivity of a binary mixture is nondivergent and the crossover from the 
critical background in the critical point to the regular background far from 
the critical point is elucidated. The crossover to the behavior of the thermal 
conductivity in the one-component limit is also discussed. 

KEY WORDS: binary mixtures; critical phenomena; ethane; methane: thermal 
conductivity; transport coefficients. 

i .  I N T R O D U C T I O N  

It is w e l l - k n o w n  tha t  the s ta te  of  a fluid near  a cr i t ical  po in t  is cha rac t e r i zed  

by a n o m a l o u s  large f luc tua t ions  of  the o r d e r  pa ramete r .  In a c c o r d a n c e  with 

the m a i n  c o n c e p t  of  scal ing t heo ry  [ 1, 2] ,  the on ly  size cha rac t e r i z ing  the 

f luc tua t ions  is the e q u i l i b r i u m  co r re l a t i on  length  3, which d iverges  at a 

cr i t ical  i sochore  of  a o n e - c o m p o n e n t  fluid as 

~ = ~ o r  .... ( I )  

where  r = T I T s - I  is the d imens ion less  dev ia t ion  of  the t e m p e r a t u r e  T 

f rom the cr i t ical  va lue  T¢, ~o is a s y s t e m - d e p e n d e n t  pa rame te r ,  and  v -- 0.63 
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is a universal critical exponent. As a consequence both thermodynamic and 
transport properties of a fluid in the vicinity of the critical point exhibit 
singular power-law behavior [3-6]. The mode-coupling theory of critical 
dynamics yields the following integral for the singular contribution to the 
thermal diffusivity D7-= 2/pCr, [7-9]: 

3Dr(q)  d),(q) I%r  f ' . ,dE L -C~(~ l 
pCe(q) (2rt) "~p-o 

sin-" O 
x (2) 

k2q(k )/P + I# -  El 2 D 7-( Iq-  El) 

where A2 = ). - 2 b is the singular part of the thermal conductivity 2, 2b the 
regular or background part, q the shear viscosity, p the density, Co the 
isobaric specific heat, kB Boltzmann's constant, and # the wave vector of 
the fluctuations, while O is the polar angle of E with respect to q. The 
integral is to be evaluated over all k up to maximum cutoff wave number 
qo = I#ol first introduced by Perl and Ferrell [10]. With an infinite cutoff 
a calculation of the integral in Eq. (2) yields 

d2(q) kBT 
3Dr(q)  = - -  - f2x(q?,) (3) 

pCp(q) 6rtq~ 

where f 2 ~ ( z ) = ( 3 / 4 : 2 ) [ l + z 2 + ( z 3 _ z  L)arctan(:) ] is the so-called 
Kawasaki function [7, 9]. In the hydrodynamic limit q---,0 Eq. (3) takes 
the form of the well-known Stokes-Einstein relation [9, 11 ] 

32 k ~ T  
zlDz - (4) 

pCp 6talc 

The validity of this equation is restricted to a very small range of 
temperatures and densities near the critical point. To present the actual 
behavior of the thermal conductivity of one-component fluids in a wide 
region of temperatures and densities, one should provide the integration 
with a finite cutoff. In this case Eq. (2) reads 

A2 k n T  
- -  f2(qt~ ~) (5) pep 6rtq~ 

where the dynamic crossover function g2(qo~) arises from the integration 
of Eq. (2) over E with a finite cutoff qo in the limit q--,0. However, the 
integral in Eq. (2) cannot be evaluated rigorously without any additional 
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assumptions [12-14]. A simplified approximation of this integral has been 
obtained by Olchowy and Sengers [13]: 

12os(qo~) rt2 Cp Cv arctan(q~)+-~pqO~ I 

E ' ]} +exp (6) 
(qo?,) ' + ((-pJp) qo?~)'-/3 

where C,. is the isochoric specific heat and p~ is the critical density. A 
similar result has been obtained for the shear viscosity [15]. A more 
general solution for the shear viscosity has been obtained by Olchowy and 
Sengers [12]. 

The situation in binary mixtures is more complicated. The Onsager 
expressions for the diffusion current Ja and heat current Jq in binary 
mixtures read [16] 

Ja = - c~ V l , -  flVT (7) 

.7 .  = - - v r +   ,Jd ( 8 )  

where /*=,u_,-t*t is the chemical potential of the mixture and where 
~, fl, and f are Onsager kinetic coefficients. Mode-coupling calculations 
performed by Gorodetskii and Giterman [17] and Mistura [18, 19] show 
that asymptotically close to the critical point, the Onsager kinetic 
coefficients diverge as the thermal conductivity of a one-component fluid, 

A S = ~ - ~ t , _ k a T o ( ? ' v ~  (9) 
6xq~ \?it.,te. r 

kaTp(O.x~ 
dfl = fl - fib = 6xq¢ \OTJe.,, (10) 

d;'; = ~'~ - "~';b = 6nq~ \ ? T J  p. ,  (11 ) 

where x = N2/(N~ + N2) is the mole fraction of the second component, S is 
the molar entropy of the mixture, and the subscript "b" denotes the back- 
ground part of the transport coefficient, which is not influenced by critical 
fluctuations. However, the crossover expressions for the transport coef- 
ficients of a binary mixture analogous to Eq. (5) for the thermal conduc- 
tivity of a one-component fluid have not yet been obtained [17-19]. It is 
the purpose of this paper to present the crossover functions for the trans- 
port coefficients ~, fl, and 7 in critical binary mixtures. In evaluating these 

x40 15 2-7 
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crossover functions we use the method of the dynamical scaling theory 
originally introduced by Ferrell [11 ]. 

In Section 2 within the Gaussion approximation we obtain the time- 
dependent correlation functions for the velocity and for the order parameter. 
Using approximate solutions for the correlation functions we derive in 
Sections 3 and 4 simple expressions for the crossover functions of the trans- 
port coefficients in a binary mixture. The obtained relations have the same 
form as the crossover function for the thermal-conductivity enhancement 
for a one-component fluid, In Section 5 we analyze the crossover behavior 
of the thermal conductivity near the liquid-vapor critical point of binary 
mixtures on the basis of the isomorphism hypothesis [20]. A comparison 
with experimental thermal-conductivity data for pure ethane is given in 
Section 6. 

2. EQUATIONS FOR THE TRANSPORT COEFFICIENTS 

To obtain the crossover expressions for the transport coefficient in 
binary mixtures, it is convenient to start from the correlation-function 
expressions of the fluctuation-dissipation theorem lalso-called "Kubo 
formulas"). Using the notation of Refs. 18 and 19 we have 

' f l  S=.----, ~ d7 dt(Ja(O,O)JalT,  t) ) (12) 
oh-~ l 

~ =  ! 
6k H T 2 

1 

7 = 6ks T 2 

d71 Jt<Jd(0, 0)%s(7, t)) (13) 

d71 dt<Js(O, 0)Js(/~, t)) (14) 

where Jd and Js are the microscoptc diffusion and heat currents. The next 
step is connected with a "decoupled-mode'" approximation in the spirit of 
Ferrell's work [11 ]. Since the concentration and entropy density are slow 
variables near a critical point, we may treat them as independent from 
the velocity fluctuations in the current-current correlation functions. This 
approach takes into account only singular behavior of the transport 
properties. If Ja = p 6x~ and Js = Tp 6S~ (where 6x and 6S denote the 
deviations of concentration and local entropy from the equilibrium values), 
Eqs. (12)-(14) transform to 

p2 f f 
(15) 
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p2 
a~= ~ I aCj" a,<a.,-io, ol as(e, ,I > < ~(o, ol ~(~, ,~ > (16) 

p2 
r g 

a ;  = 677-. J ae j  a,<aslo, o) as(e, ,1> <elo. ol ele. ,)> (17) 

The current-current correlation functions in Eqs. (12)-(14) are simplified 
by the splitting (or in other words, by the factoring) of each current- 
current correlator into two parts (see Eqs. (15)-(17)). 

At the consolute point of a binary mixture we may neglect the density 
fluctuations that correspond to the condition (V. b')=0. This condition 
means that only the transverse motion of fluid will be examined. To 
establish the behavior of the velocity correlations, we may restrict ourselves 
to the linearized hydrodynamics equation 

,atW, t) r/V-'/r(F, t) (18) 
~t p 

where tl is a high-frequency shear viscosity which is finite at the critical 
point [ 11 ]. This equation looks like the diffusion equation [ 1 ] and, hence, 
in the hydrodynamic limit k--* 0, we have 

1"2 t <F(O, O) F(F, ¢)5 = /%T4p ~ e x p l  -~tvt (19) 

with v = q/p. Very close to the critical point the relaxation time of the fluc- 
tuations is extremely large, and in a zero approximation we may replace 
the time-dependent correlations of the concentration and entropy on the 
right-hand side of Eqs. (15)-(17) with the corresponding static correlation 
functions. In this case we simply reproduce Mistura's results in the form 
(9)-(11 ). As far as we are interested in the crossover behavior of the kinetic 
coefficients, the time-dependent correlators for the concentration and 
entropy in Eqs. (15)-(17) should be considered. Since at the critical point 
the most slowly relaxing variable is the order parameter, first we should 
obtain the equation of motion for the order parameter. The simplest non- 
linear model consistent with the conservation laws of a binary fluid model, 
denoted model H in Refs. 5 and 21, is defined by the following equations: 

= c )2 <o 4 (20) H dF ar--ff+~_(Vq~ +-~ +~f'- 
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" [ 6 H ' ~  6H 
- -  - - - ] -  

at p- 6.7" " 

C'I-'(Ka_~_~_t)= T (qoVz (aH) + g° ~Tcp 6H+ ~'(K 

(21) 

(22) 

The scalar field ~p(K t)=x(K t ) -x~(P)  [here xc(P)is the critical concen- 
tration as a function of pressure P]  is the order parameter, the transverse 
vector field .7 corresponds to the momentum density or velocity in an 
incompressible fluid, and go is a coupling constant. The matrix T is a pro- 
jection operator.which selects the transverse part of the vector in brackets, 
and ~(F, t) and ~.I(K t) are Gaussian noise sources. The background or bare 
viscosity and the bare order-parameter t.ransport coefficient are given by tlo 
and ~o, respectively. This model is very close to the one introduced in the 
mode-coupling theory [7-9] .  As has been shown by Ferrell [11, 22], the 
"'decoupled-mode" approximation (15) is mathematically equivalent to 
the mode-coupling calculations. The main difference is that the coupling 
ensured in the mode-coupling theory from the equation of continuity, 
which connects the current with changes in the density variable, in the 
"decoupled-mode" theory is automatically taken into account by the Kubo 
formulas (12)-(14). Therefore, to obtain the time dependence of the order 
parameter correlation function, one can neglect the coupling in the 
dynamical equations, which corresponds to the zero value of the coupling 
constant go in Eqs. (20-22), and consider the effective Hamiltonian of the 
system in the Landau-Ginzburg form [1 ]; 

H= dF at +~(V4012+~ -h~o (231 

where the ordering field 17 = It - I~ and where I~ is the value of the chemical 
potential of a mixture I~ in the critical point. The equation of motion for the 
conserved order parameter has the form of a linear Langevin equation [2] ,  

?~p( F, l) 
~,V-" + ~,(r, t) (24) 

?t p- 

and Eq. (22} transforms to the linearized hydrodynamic Eq. (18) in t ro-  
duced above. Since the correlation functions will be evaluated in the 
Gaussian approximation (u=0) ,  we may omit the term _~p4 in Eq. (23). 
Then Eq. (24) in terms of Fourier components becomes 

?&p~:{ t ) _ 
?t ~ p  "-k2(az + ck2) aqJ~(t) + ~,i(t) (25) 
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The solution of Eq. (25), 

f 
! 

6qo£= e ~" ~-k:.,.+,.k'., "~k'(t')dt' (26) 

together with the normalization, 

<~(t)  (Z:..(t')> = 2k~ T~.k'-6~. ~.6(t - t') (27) 

yields 

( 6~o~. (0) 6~o~(t) ) = G(k) exp ( 
kr~ T ~ k  "-t'~ 

p ~  j6~. ~. (28) 

where 

G(k)= k . r  k .T  (?x'~ 
at+ok ~ [1 +(k~)2]p\OpJp. w (29) 

is a static correlation function of the order parameter G(k)= (16~0;12> 
(so-called Ornstein-Zernike function), and ~=x/cp-t(dx/dp)e.T is a 
correlation length in this approximation. 

3. THE CROSSOVER F U N C T I O N  FOR THE TRANSPORT 
COEFFICIENT a 

Equation (I 5) together with Eqs. (19) and (28) for the time-dependent 
correlation functions (b'(0, 0)/r(F, t))  and (&p~,(0) &p~(t)> completely 
determines the crossover behavior of the transport coefficient ~. Substitu- 
tion of Eqs. (28) and (19) into Eq. (15) and integration over the variables 
F and t yields 

P If'" - G(k) (30) A~=l-~n3 dk k'-[v+kBT~t~p "-G-'(k)] 

For the mutual diffusion coefficient D= ~p- '(Av/?p)e.r, Eq. (30) reads 

AD . . . .  dk {31) 
p \c~.x'/i,.T 12rt3P k2q/P +k2D(k) 

where we have introduced the notations z(O)=(Ox/dp)e.r, z(k)= 
Z(0)/(I +k2~2), and D(k)=~/pz(k) .  We note that Eq. (31) with account 
of the replacement z(k) on Ce(k), •(0) on Ce(0), and A~ on A2 is identical 
to the mode-coupling integral (2) after integration over the angle variable 
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O in the limit q = 0. The k-dependent diffusion coefficient AD(k), similar to 
the thermal diffusivity ADr(k) of the one-component fluids, satisfies an 
equation of the form I-I1, 12] 

kB T 
z]D(/,') = ~ (2,. (z) (32) 

with z=k?,. For the transport coefficient A~(k), Eq. (32) reads 

knTp(Ox) a(z) (33)  A~(k)=AD(k)pz(k)=~ ~ e.r 

with the dynamical scaling function 

~(z)=f2x(z)/(l + z  2) (34) 

In the hydrodynamic regime (z ,~ 1 ) the function a(z) ~ a(0) = I, and in the 
"'critical regime" (z ~ ~,) the scaling function a ( ~ ) = 0 .  The variation of 
a(z) between these two limits at intermediate values of z is shown in Fig. 1. 
Over the whole range of the scaling variable ~-u > - > 0, the dynamical scal- 
ing function ~r(z) is changed smoothly from unity to zero, and it differs 
significantly from unity only in the asymptotical critical region at _ ,> 1. 

The nontrivial dependence of the transport coefficient a~ on k makes 
the integral in Eq. (30)just too complicated for further analytical calcula- 

1 0  ~ r 

o B F ~ 1 

0 f ' \  r c 

; I  \ ' 

02 x . 

0 0  
10 2 I0 r 100 i0 ~ ~02 I03 

z = k ~  

Fig. I. Dynamical scaling function a(z) for the 
transport coefficient ,J~{k) as defined by 
Eq. (34). 
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tions. The k-dependent transport coefficient ~ ,  similar to the transport 
coefficient ~ [see Eq. (9)], can be represented in the form 

~ = A~t(k ) + ~b(k)= JR(k) + ~h(O) (35) 

where we ignore the k dependence of the background part ~b(k) and 
consider it in the hydrodynamic limit 07b(k)=~b(0)=~ b. Than Eq. (30), 
with account of Eqs. (29) and (34), reads 

k.rp (0.,-) 
zl~,= 6nq~ \Op/e . r  ~'(q°~') (36) 

where 

2 i0,o¢ dz 
£2~(q~¢) = n 

with 

{( 1 + __2)(i + (~b/'l)(OWOx),. r [1 + .l'o a(z)](1 + z 2))} 

(37) 

k. rp 138  
)'o = 6nq¢~b \ ? p )  t'. r 

The integral in Eq. (37) can be evaluated rigorously only numerically. 
However, in the critical region at k = qo ~> ~ ' a reasonable approximation 
for the crossover function g2~(qo~,) can be obtained if we put into Eq. (37) 
a(-) = 0. Integration of Eq. (37j in this case yields 

with 

2 [-arctan(qo ~ £2~(qo~) =-~ 
L x/ l  + voqo?, 

arctan ] x/1 + roqn~ (39) 

"v° -~bqo~  e.r 

At another limit k = 0  [a(-)-~ 1] integration of Eq. (371 yields the same 
crossover function as specified by Eq. (391 but with the parameter 

6ru12 (41) 
Y ° = k B T p q o ( l  +),o - t )  

which in the limit Yo '~ 1 also corresponds to Eq. (40). At a constant value 
k = ko in the intermediate region 0 < ko < qo, integration of Eq. (37) yields 

6nq2 (42) 
.I'D = ka Tpqo(ao + Yo l ) 
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I t) 

:¢ 

0 6  c, 

• O~ ̧  

/ /  I 
/ 

/' i 

l l l l  I t l+ , ; ' l~  , t l  Z I I ] . ( ' g r d  t l / I l l  

t~ n I 

0 o 0 
o o ¢ ~ ( z ) .  z 0 l q t ) ~  

1 ~ . "  3 t a 

qDt 

Fig. 2. Crossover function .Q for the transport 
coeMcient J~. The solid curve corresponds to 
numerical integration of Eq. (37), the long- 
dashed curve represents the crossover function 
defined by Eq. 139) with parameter )'1, as defined 
by Eq. 141L the dotted curve represents values 
calculated with yt~ defined by Eq. {40), and the 
dashed curve corresponds to the solution (42) 
with kl) = 0.1qm 

where at,= a(kn?~), and a(kn?~)is the same function as defined by Eq. (34) 
but with z=kn?~. At kn>>¢ ', a o = 0  and Eq.(42) corresponds to the 
solution defined by Eq. (40). At k n e e  t the function au=  l, and Eq. (42) 
transforms to Eq. (41). For the real k-dependent dynamical function tr(k~) 
the numerical estimates of integral (37) show that the parameter kn in 
Eq. (42) can be fixed at a constant value kn=0.1q~,. A comparison of the 
numerical calculation of integral (37) with the analytical solution defined 
by Eqs. (39) and (42) is shown in Fig. 2. As one can see in the wide range 
of the parameter qD~ both solutions, defined by Eqs. (39) and (42) with 
au=a(O.lqn?~) and obtained by numerical integration, give practically the 
same crossover functions. Asymptotically close to the critical point qn~ >> I, 
the singular part of the transport coefficient is much bigger than the regular 
(background) one (Yo >> l, Yn ~ 1), all crossover functions approach unity, 
and Eq. (36) in the critical limit corresponds exactly to the asymptotic 
solution (9). Far away from the critical point qn?~ ~< l, and the crossover 
function f2~--*0. Thus a reasonable approximation for the crossover 
function I2~(qt)?~) can be obtained even if we ignore the k-dependence of 
the dynamical function a(-) in Eq. (37) and consider it only at the constant 
value of the wave number k = k~ =0.1qn. 
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4. THE CROSSOVER FUNCTION FOR THE TRANSPORT 
COEFFICIENTS ~ AND 

The essential step in applying the decoupled-mode method to calcu- 
lating transport coefficients is the determination of the expression for the 
fluctuating current in terms of the basic fields. To present the coefficients 
All and ~ in a similar form we should rewrite the correlation functions of 
the concentration and the entropy through the order-parameter correlation 
functions. For this purpose it is convenient to represent the ordering field 
h in Eq. (23} as 

?TJ,,., ( T -  T~) (43) h =- i t  - t i c  = 

The local entropy becomes 

S(F, t ) -  
a , _  ( ,~ I t ' ]  

= - 2T~. q)-(r, t )+ \ -~ jp . ,  ~p(7, t} {44) 

that corresponds exactly to the scalar extra field q(F) introduced by Siggia 
et al. in their renormalization-group treatment i-21]. The corresponding 
expressions for the correlation functions (6x 6S) and (6S 6S) read 

(?l'~ (6x(O, o)6S(F, t ) )  = \ , ~ / , , . ,  (6,p(o, o)&o(/:, t ) )  (45) 

( 6s lo,  01 6s(7. t) ) = \ ? T J  ,,. , ( 6~p(O, O) &o(7, t) ) 

+ ~ <6002(0, O) 6Oo'-(r-, t)) (46) 

Substitution of Eq. (45) into Eq. (16) yields 

A/~ = ku TP (?.x~ \ ?-'-T,/ e.,, g2t'(qt'c ) (47) 

where the crossover function "Qt~ coincides with the crossover function 
for A~: 

(21~(qn? " ) = ~,(qt,5, } (48) 

With account of Eq. (46), Eq. {17} for z/j; takes the form 

6nq?, \OTJp.,. ~ e.r'Q;'{q"~}+ 6ml~TpCp'"g2'"lq')~}' (49) 
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where f2>.(qo¢)~ (6q~ 6~0) and, as in the previous case, coincides with the 
crossover function for A~: 

12;.(qo,~) = £2,(q~ ~ ) (50) 

A direct calculation of the crossover function f21;.(qo¢) ~ (6~o-" 6~0-') results 
in a slight logarithmic divergence, £2 t ; .~ ln(q~) .  The reason for this 
nonphysical divergence arises from the fact that the correlation function 
(6q~-" 6~0-') is proportional to the isobaric specific heat 

Ce..,. ~ I <6q~2(0) 6~2(?) > d7 (51) 

which diverges weakly as r ~ at a consolute critical point, whereas in the 
Gaussian approximation the critical exponent ~=0 .  Thus within the 
Gaussian approximation we cannot obtain the correct result for the cross- 
over function .c2~;. from Eqs. (17) and (46) directly. For this purpose it is 
necessary to apply the renormalization-group method [2, 5, 21, 23]. 
However, as shown in the next section, in the limit of pure fluids ), --, 2, and 
the crossover function 12~;.(qt, c.') has to transform to the crossover function 
of one-component fluids f2(qt,¢) [see Eq. (5)]. Therefore the actual form 
of the crossover function .c2~.(qD~) can be derived from Eq. (2). In the 
hydrodynamic limit (q--* 0) under the assumptions 

Cp(k) = G(k}, )l(k) = q(O), D r ( k  ) = [-A2(O) a(ko~)  + ).b]/pCp(k) ( 5 2 )  

we obtain after integration 

2 E Q(qo~) = f21~.(q~) = arctan(qo~) 

1 ] 
arctan (53) 

x/l  + .v.oqt~d. x/ l  + )',t>qt~?,a 

with 

6nq 2 
Ylo = kr~ Tpq•(oo + )', I) (54) 

where y~ =kBTpCe.,/6ntl¢~b and ao=a(ko~). In the case .v~o=)'t~ the 
crossover function f2(qD?,) coincides again with the crossover function 
obtained for £2~(qo~) [see Eq. (39}]. This result may be considered addi- 
tional proof of the mathematical identity of the mode-coupling calculations 
developed by Kawasaki [7, 9] and by Kadanoff and Swift [8]  and the 
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"'decoupled-mode" approach considered in this paper. It should be noted 
that the crossover function Dos(qo~)  [see Eq. (6)] has been obtained with 
simplified assumption other than D,~.(qo~). Therefore the forms of Dr. and 
Dos  are different. A comparison of these crossover functions is shown in 
Fig. 3 (for simplicity we consider y ,o"-yo~-6n~12/knTpqo as a new 
system-dependent parameter). One can see that the crossover function 
Dos,  unlike the crossover function Oa~., has a maximum at temperatures 
r.~ 10 t. This maximum arises from the second term on the right-hand 
side of Eq. (6) (term ~?,C,,/Ce), which is a product of the integration of 
Eq. (2) at assumption Ce(k) = G(k) + C,.(O) and DT(k) = 0, unlike assump- 
tion (52) accepted in this paper. In the nearest vicinity of the critical point 
of a binary mixture C,. ~ C,..,. ~- const, Ce ~ Ce.,. oc r - ~, ~ oc r " (see, e.g., 
Refs. 24 and 25) and this term at r--. 0 produces an unphysical divergence 
of the crossover function Dos-- ,  ,:¢_, as our crossover function £2~;.---, 1. 
A more rigorous solution of the mode-coupling integral (2) obtained by 
Olchowy and Sengers [12]  gives a better representation of the crossover 
function £2(qo,~) than the simplified model defined by Eq. (6), but that 
solution is much more complicated than the simple approximation (53) 
obtained in this paper. 

5 r 

C~tl o 

P Pc / / J  

0 5 IIos . 
~"ll I 0 
yu~O 1 

r t ~  \[ 

/ l \ 

'/I 

1o b 1o ~ 1o -4 10 3 lo~2 ~o ' 'o ° 

v T / T  t - I 

F i g .  3 .  Crossover function Q(qo¢)  for the ther- 
mal conductivity of ethane along the critical 
isochore. The dashed curves are generated by 
Eq. (53), and the solid curve represents the 
simplified approximation of Olchowy and 
Sengers [13].  The thermodynamic properties 
were calculated from an asymmetric scaled equa- 
tion [ 2 6 ] .  
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Finally, the crossover expressions for the kinetic coefficients of a 
binary mixture can be written in the form 

£ = 6nq-----f \Clt / P. r 

/ ~ = ~  , e . , , k n T p (  ?x ) .("2:,(q D ~ ) + /~ b (56) 

knT'- p (?.x~ (?ITS'- k ,  TpCe., 
;~= 6nq~ \? l~}p . -r \?T/r . ,  f2"(qn~)+ 6ntlg,  g2(q°~)+)';b (57) 

where the crossover functions Q,(qn~) and g-2(qn?,) are given by Eqs. (39), 
(42), and (53). 

5. CROSSOVER BEHAVIOR OF THE T H E R M A L  C O N D U C T I V I T Y  

The thermal conductivity of the mixture 2 is defined by the equations 

L=0, Jq= - ) . v r  158) 

which, according to Eqs. (7) and (8), lead to the following relation between 
). and the kinetic coefficients ~, /~, and 5; 1-16]: 

2 = ~ - T l f l ' - /~ t )  (59) 

Substituting crossover equations, Eqs. (55)-(57), for the kinetic coefficients 
into Eq. (59), we obtain 

). k ,  TpCe ,. ,.,, 
• sLtqt~) + ~hlt'-.rTQ(y) + "Tu (60) 

6 n q ~  

where the crossover function ~2,(qD~) now appears only in the argument 

v=A~/~,u = kuTp ?x (2~(qn?,) (61) 

of the new crossover function 

yll + 2 y * ) -  (3'*) 2 
Oly)  - (62) 

l + y  

in Eq, s. (60) and (62) we have introduced the notation pr  = (?ll/3T)e., and 
.'l'*=/~b/~lT~b. So the behavior of the thermal conductivity of a binary 
mixture in the critical region is determined by the crossover function Q(y). 
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Fig. 4. Crossover function Qly} generated by 
Eq. 1621 for two values of the parameter y*. 

A plot of this function at two values of y* is shown in Fig. 4. Far from the 
critical point when y ,~ 1 (qo~ < 1, £2 ,~ I, £2~ ,~ I ) 

Q ( y )  "- - (y*)-" + (1 + y , ) 2 y  (63) 

and the thermal conductivity tends to its regular (background) part 

" " . *  " " T~b/'2 b (64) 2 .  = 7b -- ~ .  TIG-( ;' )- = ;'b -- 

Asymptotically close to the critical point at . r~  1 (q,j¢ >> 1, .O ~ (2~ ~ I ) 

Q ( y )  -~ I + 2 y *  - (1 + y*) ' - l y  (65) 

and the thermal conductivity reads 

2 -  k ~ T p C e ' "  ~ b ( l + y * ) 2 T l l r + 2 ¢ .  (66) 
6rtq,~ y 

where the critical background 

~.cb = }.b + Tlt~.~b( I + y , ) 2  (67) 

is not equal to the regular part ),h. 3 The consolute point of a binary 
mixture is isomorphic to the critical point of a one-component  fluid and 
the specific heat Ce..,. has the same behavior as the specific heat C,. of a 
pure fluid [ C e . ,  ~ r "(P) ,  where z(Pt = T/T~(P) - 1 ]. This means that the 

For a mixture near the plaint point this has also been shown by Mostert and Sengers [27]. 



298 Kiselev and Kulikov 

first term on the right-hand side of Eq. (66) in the consolute point is equal 
to zero and in the intermediate region y ~ l, and both quantities Q and ), 
demonstrate the crossover from the regular background (63) and (64) to 
the critical background (65) and (67). 

Equations (53), (60), and (62) have been obtained at the consolute 
point. Nevertheless, according to the isomorphism hypothesis [203, which 
is confirmed by direct mode-coupling calculations [17], we may extend 
them to a binary mixture near the liquid-vapor critical point, but in this 
case the isomorphic path/J -- const does not coincide with the experimental 
path x=cons t ,  and the derivatives (~.X'/(qtl)p.T, (631t/t'~T)p.~. and the specific 
heat Ce.,. are renormalized. In accordance with the results of a previous 
analysis carried out by Anisimov and Kiselev [24, 25], the connection 
between the isomorphic variable r( l i )= T/Tc(I~)-1 and the experimental 
variable r (x )=  T/Tc(x)- 1 along the critical isochore is not analytic, 

r '  ~(ll)[l + r~(/l)/X.4] = r(x)/XA (68) 

where the parameter 

AokBT, dx (1_ dT~ 2 
X4 = ~ - ~  dl(¢ \T~ dx J (69) 

is equal to zero at the critical points of the pure components. Far from the 
critical point such that 

r(.x-) ~ x!~'" (70) 

r(/l) ~ r(x) (71) 

all isomorphic properties at x = const behave as those of a one-component 
fluid [ 2 5 ] ,  

C,..~,=kBA(,r- ~(x) (72) 

f \ Op 
I,aT,,~-~)T,,,= For "(.,) (73) 

Cp.,, =kaFo(TJP~)(dP~/dT¢)'- ~ "(x) (74) 

~=~o~ "(x) (75) 

where Ao, Fo, and ~o are the system-dependent critical amplitudes, and ct, 
7, and v are universal critical exponents. Asymptotically close to the critical 
point, such that 

r(x) ,~ XI4/~ (76) 

z(p) = ['c(x)/X A ] t/(, ~) (77) 
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renormalization of the critical exponents ~t -+ ~/( l - ~t), ), ~ y/( l - ct), and 
v--* v / (1 -o r )  (the "Fisher renormalizat ion")  takes place. The behavior of 
the nonisomorphic  properties appears to be more complicated. The 
isochoric specific heat at a constant concentrat ion C,.., -~ C,.,, cc r ~(x) in 
the region defined by inequality (70) remains finite at the critical point. At 
condit ion (76) it is a cusp with the infinite derivative [24, 25] 

C,.., [_ l - ~-~A \-~.. ,  J + (C,...,-)b (78) 

where (C,..,)~ is a background specific heat. The derivative 

=(°'°3 +/-F,'3 ( x,f 
?ai r . ,  \?P]r.,, \AVJr.,, \gP/r.,, (79) 

at the critical isochore takes the form [25]  

9P,] T.., :- 10 L X~ r ~(Fl-~l  

Here the new characteristic parameter  Xr  reads 

,,, l- 

where the derivative (?P/?.X)r.~,.~ is taken at the condition of two-phase 
coexistence. Far  from the critical point 

r(x) ~> X~;  (82) 

the derivative (t?p/~P)T.,. and the specific heat Cp..,. behave as (t~p/c'~P)T and 
C~, in one-component fluids and as (gp/~P)r.,, and Ce.j, in binary mixtures 
[see Eqs. (73) and (74)]. Asymptotically close to the critical point at con- 
dition (76) the derivative (gp/gP)7:, and Ce.,. manifest a weak singularity 
with the renormalized critical exponent ~t, 

I,% T~ (?P'~ = FoXA (r(x)~ "" ,, 
\ ? P Y r. ,. "~r k-~.A / (83) 

( r ( x ) ~  .... " - "  (84) 
Ce..,. =kBAo \ XA ] 

Finally, in the temperature range 

I,.;. (85) Xt/~ < r ( x ) < X r  
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Outside the wide cone 

and a narrow one is 

r (x)  = A'!.," (89) 

X'r> ,~ r (x) ,~ I (90) 

the correlation length and isobaric specific heat at constant x of a binary 
mixture behaves as ~ and Ce in one-component fluids and the derivatives 
(?.v/?it)p.. r and (?y/?T)~,..~ for dilute solutions read 

A" A" 

e .r  k ) ) T  

-~T/e. ' "- kH In x 1921 

It is convenient  to represent the parameters  X r  and .¥., and the t ranspor t  
coefficients ~b and /~, in the form 

X r  = X o r x (  I - x ), X.4 = Xo.4 x( I - x } (93 } 

and 

~h = ~()X(I --.V). ~ ,  = ~(,X(I --X) (94) 

which provide the correct asymptotes  for these parameters  in the pure- 
componen t  l imi t )  In this case the second term in Eq. (60), 

~ h l [ r Q ( Y )  "" ~oxk~ In ' -xQ() ' )  (95) 

4 In R e [  25..V.) t = F . [ (  lP,)(dP,/dx)] z, a n d  X()~ = Ao[ (  l,'T,)(dT,/dx)]". 

and Cp.~ do not depend on tempera ture  

';, "] r .  
C-~PJ r., ~ k ~ - ~ - ¥ r  (86) 

k.,-.. 
Ce., ~ X r  \P~.~-~.,/ (87) 

and demons t ra te  the crossover  from one-component - l ike  behavior  to the 
renormalized behavior  at the edges of the tempera ture  range. 

Thus the character  of the behavior  of all t he rmodynamic  propert ies  of 
a binary mixture at the critical isochore t ) =  p,.(x) is determined by two 
"cones." A wide cone is 

r(.x) = X ~-~' (88)  
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and in the limit of a pure solvent ( x ~ 0 ) ,  Eq. (60) transforms to Eq. (5) 
for the thermal conductivity of one-component fluids. Thus the crossover 
function O ( q n ~ )  in the limit x ~ 0  should transform to the crossover 
function in Eq. (5). 

In the temperature range 

X ~/~ ~ r(x)~< X~r (7 (96) 

the correlation length reads 

~or (.x) (97) 

and the derivative (c~x/c')l~)p. r is diverged as [25] 

Ol~/e. r k a T  r 7(.v) (98) 

The condition y =  1, in accordance with definition (61), generates a new 
cone. 

r (x )=  X.I. (;' ")= (~c(,Xr) ' c;" ") (99) 

where xo= p/6nqEto~ o. The existence of this cone near the liquid-vapor 
critical point of binary mixtures has been pointed out by Onuki [28]. 
Outside this new (kinetic) cone y,~ i the thermal conductivity of binary 
mixtures demonstrates one-component-like temperature behavior. At 
condition (90) the parameter y~~or" (x )  [see Eqs. (53) and (91)], the 
specific heat Cp..,..,. ~ - ; ' ( x ) ,  and Eq. (60), as shown above, simply transforms 
to Eq. (5). In the temperature range 

X),. '(> .... ),~ r(x)~<X~" (I00) 

the parameter 

.v~ X,.r-7+ "(x) (I01) 

and despite that the isobaric specific heat Ce.x in this region does not 
depend on temperature [see Eq. (87)], the thermal conductivity of binary 
mixtures again diverges with the same power law but with another 
amplitude, 

)'c '~ ~ b / / T (  1 + ) , , ) 2  Xv T - 7 +  "(A') + )'b (102)  

which corresponds to the second term on the right-hand side of Eq. (60). 
(The thermal conductivity ), is a sum of three terms, in accordance with 
Eq. (60). Both the first and the second terms may be principally divergent 
with some power law, or not divergent. In the temperature region defined 

s40 15 2-8 
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by Eq. (100), the first term is nondivergent, but the second one diverges as 
r(x) - ' '+" with amplitude ~ l ~ r ( l  +)'*)-'X,.. If we consider the temperature 
region defined by Eq. (90), the first term in 2 becomes divergent with the 
same power law r -i+,., but with another amplitude, and the second term 
in Eq. (60) in this temperature region becomes nondivergent.) 

Inside the cone (99) y )> 1 and two different regions again exist. In the 
range of temperatures 

x?," ~ ~(x) ¢ x:.,'~ "' (103) 

the parameter y is determined by Eq. (101), the specific heat Cp ..... as 
before, does not depend on temperature, and the thermal conductivity of 
binary mixtures tends to its critical background value as 

). "~ 2cb -- ~b T/.t~-(1 + .1'*) 2 X/-lr ~ .... (A') 

x l l  Y°F°kB(TJP~)2(dPc/dT~)'- ,, .... ] 
- x( 1 - x ) (  1 + y*  )-----Sll--~r r- ' (x )  (104) 

where the critical background 2cb is determined by Eq. (67). Since 
2v - 7 ~ 0.02 ,~ 1, the sign of the difference A).cb ----- 2cb - -  ), is determined by 
the correlation of the amplitudes in the square brackets on the right-hand 
side of Eq. (104). Asymptotically close to the critical point at condition 
(76), renormalization of all critical exponents takes place, the specific heat 
Cp.,. ~ r ~'~ - ~(x), and the sign of A2cb is also determined by the competi- 
tion of the first two terms in Eq. (104). The behavior of the thermal 
conductivity in the asymptotic region for a dilute-solution limit has been 
considered by Anisimov and Kiselev [25]. The main result of their con- 
sideration is as follows: In dilute solutions the enhancement of the thermal 
c o n d u c t i v i t y  A)'cb is positive in the entire experimentally accessible region. 
The results of our calculations of the thermal-conductivity enhancement 
A~=(E-kb)/~toR2T (R is the gas constant) for methane-ethane binary 
solutions are shown in Figs. 5-7. The thermodynamic properties were 
calculated from an asymmetric scaled equation [29] and an isomorphic 
generalization of the law of corresponding states [30, 31 ]. The nonuniver- 
sal parameter y* in Eq. (62) was written as y* =kB/l~ r and the kinetic 
parameters Yo, )'Jo, and Ko were treated as system-dependent constants 
(Yo = )'~o = 0.1, Ko = 1). As one can see from these figures, at high concen- 
trations the inequality 2 ~< 2cb is also valid and the crossover behavior of 
the thermal conductivity differs strongly from the asymptotic behavior even 
in the vicinity of the critical point. Thus for a description of the thermal 
conductivity experimental data in binary mixtures, one should use the 
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Fig. 5. The dimensionless thermal-conductivity 
enhancement ~7.=(;'.-2bl/~oR2T along the 
critical isochore p =pc(x) for methane-ethane 
mixtures: x = ( l )  0.05, (2) 0.1, (3) 0.2, and 
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Fig. 6. The dimensionless thermal-conduc- 
tivity enhancement zl)..= (2-2b)/~oR2T for a 
methane-ethane mixture at x = 0.5 mole fraction 
of ethane along isotherms: (1) r(x)= 10 6; 
(2) r(x)= 10 -2. The solid curves were generated 
by Eq. (60), and the dashed curves represent the 
asymptotic laws wi th /2 ,  = / 2  = 1. 
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Fig. 7. The dimensionless thermal-conduc- 
tivity enhancemcnt J~=(),-).h)/~oRZT at the 
critical density p =p~(x) for a methane--ethane 
mixture along isotherms: (1) r (x )=  10-6; (2) 
r (x )=  10 ~; (3) r (x )=  10 -'. The solid curves 
were generated by Eq. (60), and the dashed 
curves represent the asymptotic laws with 
-Q, -- Q -- 1, 

crossover model. Unfortunately we cannot provide here a direct com- 
parison with experimental data for the thermal conductivity of the binary 
mixture, because the range of applicability of the isomorphic equation of 
state [30-1 is still limited and does not provide the crossover from singular 
thermodynamic behavior in the immediate vicinity of the critical point to 
regular thermodynamic behavior far from the critical point. The creation of 
the equation of state of binary mixtures which incorporates this crossover 
behavior is a separate task and is not the aim of the present paper. 
Nevertheless, as soon as the crossover functions s'-2,(qo~) and 12~;.(qn,~) 
for the transport coefficients in the binary mixture exactly coincide with 
the crossover function Q(qo~) for the thermal conductivity of the one- 
component fluid for verification of the obtained crossover equations, we 
may apply them to the experimental thermal-conductivity data of pure 
ethane, where an extended crossover equation of state already exists 1-32]. 

6. C O M P A R I S O N  WITH E X P E R I M E N T A L  DATA FOR P U R E  
E T H A N E  

To fit experimental thermal-conductivity data, one needs, in addition 
to the equation of state, expressions for the background transport coef- 
ficients )-b and r/b. As noted earlier by Sengers and co-workers [6, 12-14], 
the excess functions 2 h -  20 and r/b - q o ,  where 20 and qo are the transport 
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coefficients in the dilute-gas limit, can be treated as functions of the density 
only, so that 

2t, = Zo(T) + ~  2,.p' (105) 
i 

tlt, = qo(T) + Z f l i p  i (106) 
i 

with 

)-o(T) = w/T/Z  ),ojT j (107) 

qo(T)=,e/T/~tlojT i (108) 

For the coeff ic ients  2oi, r/o~, and  qi, we a d o p t  the s a m e  values  as used by 
O I c h o w y  and Sengers  [12 ,  13] ,  but  the coeff ic ients  

)-I = !.8386 10 3, 22 =2.9525 10 5, 26 = -5 .8296  10 -9 (109) 

have been determined from a fit of the crossover equations, Eqs. (53) and 
(57), to the experimental data for the thermal conductivity of ethane 
obtained by Mostert et al. [14].  The correlation length, as generalized by 
Olchowy and Sengers, is 

¢ = ~o(3~2/1",,)" ~ (l lo) 

• I O 0  p e  , \, 
• \ • I 06 p~ 

7 \ • [ 1 7 , o  c 

7 ; 'o,1 , , 

E \ 
E " O,o '  

[ 

Z½ 
t~(! ' 

tO - }  ' 0  -2  I0-' 

(T T .  ),,'T 

Fig. 8. The thermal conductivity of ethane as a 
function of temperature along isochores. The sym- 
bols indicate experimental data obtained by Mostert 
et al. [14] and the curves represent values calcul- 
ated with the crossover model. 
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Fig. 9. The thermal conductivity of ethane as a function of 
the density along isotherms. The symbols indicate experi- 
mental data obtained by Mostert et al. [14]  and the curves 
represent values calculated with the crossover model. 

with 

A¢~= ~(T, p ) -  ~(Tr, p) Tr/T (I11) 

where Y.=P(?P/PP)rP~P~ 2 is a reduced isothermal compressibility and 
Tr= 2T~ is a reference temperature. The exponents ~=0.11,  7 =  1.24, and 
v = 0.63 are universal, and for the system-dependent parameters ~o and qo, 
we adopt the values obtained by Mostert al. [14], 

~o=0.19 nm; q31 =0 .17nm (112) 

The result of fitting the crossover equations (53) and (57) to the experi- 
mental thermal conductivity data of Mostert et al. 1-14] is shown in Figs. 
8 and 9. A good agreement between the calculated values of the thermal 
conductivity and experimental data is observed. 

7. CONCLUSION 

In this paper the crossover equations for the critical enhancement of 
the transport coefficients occurring in diffusion, heat conduction, and their 
cross-processes near the consolute point and the liquid-vapor critical line 
in fluid binary mixtures have been obtained by the decoupled-mode theory 
method. The crossover functions for these coefficients coincide with the 
crossover function for the thermal conductivity in the one-component limit. 
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In the critical limit the crossover expressions for the kinetic coefficients of 
a binary mixture reduce to the asymptotic form obtained earlier by 
Gorodetskii and Giterman [17] and by Mistura [18, 19] by the mode- 
coupling theory method. The crossover behavior of the thermal conduc- 
tivity of a binary mixture has been analyzed. It is shown that the thermal 
conductivity of a binary mixture is nondivergent and exhibits a crossover 
from the critical background in the critical point to the regular background 
far from the critical point. The simple crossover equation for the thermal 
conductivity near the vapor-liquid critical line has been obtained. In the 
limit of pure components this equation transforms to the crossover equa- 
tion for the thermal conductivity of a one-component fluid. The equation 
has been used for representing experimental thermal conductivity data of 
pure ethane. The agreement with experimental data testifies to the fact that 
the proposed model correctly describes the crossover behavior of the trans- 
port coefficients. For a complete description and for direct comparison 
with the experimental thermal-conductivity data of a binary mixture, an 
extended crossover equation of state for a binary mixture is needed. In this 
connection a new result obtained by Jin et al. [33] for the crossover 
equation of state of a binary mixture is very interesting. 
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